sexta-feira, 20 de novembro de 2015

Pitágoras


Pitágoras

 

Pitágoras fundou uma escola com fins políticos, religiosos e filosóficos, quando tinha perto de 50 anos de idade.

Os pitagóricos concentravam-se sobre quatro temas: a Aritmética, a Música, a Geometria e a Astronomia. Estes quatro mathemata deram mais tarde origem ao quadrivium medieval. A aritmética tratava o estudo dos números naturais, suas classificações e propriedades. A Música abordava as relações entre os números, a Astronomia estava para a Geometria um pouco como a Música estava para a Aritmética: enquanto uma estuda relações entre objetos, a outra dedica-se aos objetos em si. Após três anos em que somente podiam ouvir as lições do mestre através de uma cortina, os iniciados eram aceites no núcleo da sociedade.

Esta sociedade mística cumpria alguns ritos estranhos aos nossos olhos. Por exemplo, não podiam apanhar objetos que caíssem ao chão, não podiam comer feijão, e a razão para o vegetarianismo prendia-se com a crença na transmigração das almas humanas para animais. Conta-se que, um dia, Pitágoras, vendo um cão a ser espancado, interveio e disse ao agressor: “Pára! Nesse animal vive a alma de um amigo meu. Reconheço-o pela voz.”

O símbolo que utilizavam para se reconhecerem era o pentagrama. De acordo com os preceitos desta organização semissecreta, todas as suas descobertas eram atribuídas a Pitágoras. Não podemos distinguir entre eles e os seus discípulos nesta matéria. Além disso, Pitágoras não deixou textos escritos e o voto de segredo a que os discípulos estavam sujeitos tornam a autoria dos resultados difícil de estabelecer. Assim, quando escrevemos sobre Pitágoras, podemos estar a referir-nos a algum outro protagonista desconhecido da sua agremiação.

Sobre a morte de Pitágoras também não há certezas, mas conta-se que os pitagóricos se tornaram politicamente muito poderosos e que uma revolta popular, por volta de 500 a.c. incendiou a respetiva sede, matando muitos. Entre eles estaria o próprio Pitágoras.

A grande diferença entre os pitagóricos e outras agremiações reside na apologia do saber, da Matemática em particular. A ideia de que a natureza se lê e compreende com a mediação da Matemática é pitagórica, “tudo é número” é a expressão atribuída a Pitágoras.         

O nome de Pitágoras estará para sempre associado ao teorema a que deu o nome. Todos aprendemos na escola que:

Um dia em Siracusa

Disse Pitágoras aos netos:

“O quadrado da hipotenusa

É igual à soma dos quadrados dos catetos”.

Um triângulo diz-se retângulo se um dos seus lados medir 90°, isto é, se for reto. Num tri6angulo retângulo os lados menores chamam-se catetos e o maior chama-se hipotenusa. Este teorema diz que se as medidas dos lados de um triângulo retângulo forem a, b e c então a2+b2=c2 . Se três números satisfazem esta relação, dizemos que formam um triplo pitagórico.

Ora, triângulos retângulos, nomeadamente os de dimensões 3,4,5 já eram utilizados no Egito havia muito tempo, para traçar ângulos retos. Uma corda, com nós igualmente espaçados, quando esticada formando um ângulo, de tal forma que os lados do triangulo correspondente medissem 3,4 e 5 espaços entre nós, garantia que o ângulo entre os lados menores era reto. 

Os babilónios já conheciam os triplos pitagóricos inscritos em placas de barro datadas de mil anos antes de Pitágoras.

Texto adaptado de Coleção Jogos com história

TALES – GRÉCIA ANTIGA


TALES – GRÉCIA ANTIGA

 

Tales, caminhando absorto em observações astronómicas, caiu num poço. Uma mulher, que lhe valeu, riu-se e criticou: “Como pode o sábio saber o que fazem as estrelas e desconhecer o chão que pisa?”

Ainda hoje esta imagem ilustra o comportamento dos estudiosos que se concentram excessivamente nas suas matérias.

 

Todos aprendemos na escola o célebre Teorema de Tales, que diz respeito a uma proporcionalidade de comprimentos de segmentos, quando duas retas concorrentes são cortadas por duas retas paralelas.

Outros resultados há cuja paternidade é atribuída a Tales. Alguns são tao evidentes, que não parecem teoremas, como o que diz que todo o círculo é bissetado (isto é, dividido em duas partes iguais) por qualquer diâmetro.

Outros teoremas são mais sofisticados, como o que garante que todo o ângulo inscrito numa semicircunferência é reto.

A Tales atribui-se também a medição da altura de uma pirâmide egípcia, mediante o uso de uma pequena estaca. Colocando a estaca verticalmente no chão Tales sabia que, à medida que o movimento do sol vai projetando sombras de comprimentos diferentes, há uma altura, fácil de determinar, em que a sombra mede tanto como a própria estaca. Basta neste momento medir a sombra da pirâmide. Este método funciona, já que o grande afastamento do sol nos permite assumir que os seus raios são paralelos.

Usando um conceito relacionado, também estudado nas nossas escolas, as semelhanças de triângulos, Tales obteve um método de estimar a distância a que um barco no mar se encontra da costa. Conta-se também que previu a data de um eclipse lunar, o que leva a crer que havia estudado seriamente os textos babilônicos.

 

Texto adaptado de Coleção Jogos com história